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Abstract

The Large Hadron Collider (LHC) experiments generate massive datasets composed of billions of
proton-proton collisions. The analysis of this data requires high-throughput scientific computing
that relies on efficient software algorithms. In this project, I aim to investigate whether small
efficiency improvements in the LHC software can have a large energetic impact, given the sheer
volume of data involved. Additionally, I aim to explore the impact of different computing archi-
tectures and job submission systems on energy efficiency. To achieve these goals, I will use metrics
from the Green Software Foundation[1] and other resources to estimate energy efficiency. I will
then evaluate whether to make small changes to the code to improve efficiency and evaluate the
potential savings. I will also test the software on different platforms and job submission systems.
My expected results include a summary of metrics for software energy consumption, visualisation
of test results, and identification of possible improvements to software algorithms. The project will
provide valuable insights into the energy efficiency of scientific software, with potential applications
beyond the LHC experiments.

Figure 1: Increasing the Carbon Efficiency of Scientific Softwares [1]
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1 About Me

1.1 The Student

Name Manas Pratim Biswas

e-mail manaspb2405@gmail.com

GitHub https://github.com/sanam2405

Website https://manaspratimbiswas.com

Time Zone IST (GMT +05:30 Hours)

1.2 The Institute

University Jadavpur University

Major Information Technology

Year Junior

Degree Bachelor of Engineering

1.3 Experience in Research Software Development and Coding

I have been coding in C++ since the last five years and in Python for the last two years.
Apart from these two primary languages, I am familiar with C, Java and JavaScript. I
work on mac-OS and Ubuntu which is a Debian based Linux distribution. I primarily code
in Visual Studio Code for projects in C++ and I use Jupyter Notebook and PyCharm for
projects related to Machine Learning and Data Science where I primarily code in Python. I
possess a decent understanding of Machine Learning and Deep Learning. I have completed
all the fundamental courses related to Machine Learning offered by Stanford University and
deeplearning.ai from Coursera. Additionally, I have gained practical experience by working
on basic Machine Learning projects, specifically in the areas of Convolutional Neural Net-
works, Recommendation Systems, and Time Series Analysis. Furthermore, I am proficient
in Data Structures and Algorithms, and enjoy tackling complex algorithmic problems and
puzzles. I have an in-depth knowledge of Object-Oriented Programming and am comfortable
with computer fundamentals. I also have a strong background in mathematics and a fair
understanding of statistics.

I’ve been fortunate enough to intern as an Undergraduate Researcher at some of the top
institutions in India, including IIT Bombay, IIT Kharagpur, ISI Kolkata, DRDO, Jadavpur
University, and Calcutta University. These experiences have given me a strong foundation in
Machine Learning, Deep Learning, Image Processing, and Water Informatics. I’ve also honed
my Software Development and Testing skills while interning at Ansys which gave me valuable
insight into maintaining large code bases and working with Version Control Systems like git.
At Amazon, I attended workshops and boot-camps led by Amazon scientists on Machine
Learning. Previously I have participated in Open-Source programs such as Hacktoberfest
and Hacksquad where I led a team of 5 which eventually ranked in the top 30s out of 750+
teams globally. Suffice it to say, my journey has been a thrilling one!
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1.4 My Motivation

As a software developer, I have always been concerned about the environmental impact of
software and the need to develop more sustainable solutions. Therefore, this project proposal
immediately caught my attention, as it aligns perfectly with my values and aspirations as a
developer.

In today’s world, where energy crisis and environmental issues are becoming more press-
ing concerns, it is crucial that we start taking action to develop sustainable software solutions.
As scientific software is being used more and more in high-throughput computing, there is
a growing need to optimize its energy efficiency and reduce its carbon footprint. This pro-
ject proposal addresses these issues by providing an opportunity to firstly evaluation of the
energy efficiency of scientific software used in LHC experiments, and attempts to identify
where this efficiency can be improved.

Through this project, I hope to gain a deeper understanding of the metrics for software
energy consumption and how they can be applied to scientific software. I am excited to learn
about and work with the selected software frameworks and algorithms, as well as set up tests
and visualizations for applying metrics to them. I look forward to the challenge of identifying
possible improvements, applying them, and running tests again to measure their impact on
energy efficiency. Furthermore, I believe that this project has the potential to make a signi-
ficant impact in the field of scientific computing and beyond. By developing energy-efficient
software solutions, we can reduce the environmental impact of high-throughput computing
and help mitigate the effects of climate change. This is a crucial task, and I am eager to
contribute my skills and knowledge towards this goal.

1.5 My Projects

Software Energy Cost [2] - Evaluation Task - A Software Performance Es-
timation tool developed as an assessment to this project using profiling tools
such as TensorBoard [3], cProfile[4], SnakeViz [5] and memory-profiler [6].

IPL Winner Predictor [7] - A winner predictor that uses Logistic Regression
and predicts the winning chances after each ball in the second innings of an
IPL cricket match.

Diabetes Prediction System [8] - A diabetes predictor that uses Support Vec-
tor Machine to predict if a person is diabetic based on various parameters.

Visual Sudoku Solver [9] - A Sudoku soving application build using the Py-
game library and backtracking algorithm to solve a given Sudoku board
while slowing down the rendering time of the board to create a better visu-
alisation of the backtracking algorithm

All of my projects (including others) can be found on my GitHub page. A more compre-
hensive presentation about my experiences can be found in my Curriculum Vitae.
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2 Research Methodology and Inspirations

2.1 Energy Efficiency across Programming Languages

Rui Pereira et al. in their work[10] revealed that there is a common misconception that redu-
cing the execution time of a program will always lead to a proportional reduction in energy
consumption. However, the Energy equation Energy (J) = Power (W) x Time (s) shows
that energy is also affected by the power variable, which is not constant. Therefore, there
are conflicting conclusions on the relationship between energy and time in software. Some
studies[11] support the idea that energy and time are directly related, while others[12] have
observed the opposite. In short, the relationship between energy consumption and execu-
tion time in software is more complex than commonly thought. In their next paper[13], the
authors discussed a study on the energy efficiency of different programming languages based
on the solutions to 10 programming problems from the Computer Language Benchmark
Game (CLBG) repository[14]. They developed a framework to systematically run, measure,
and compare the energy, time, and memory efficiency of the solutions to establish rankings
based on single and multiple criteria. The results revealed that slower/faster languages can
consume less/more energy, and memory usage significantly influences energy consumption.
The CLBG is an initiative that provides a framework for running, testing, and comparing
implemented solutions for a set of well-known, diverse programming problems. Overall, the
CLBG provides a valuable resource for comparing the performance and energy efficiency of
different programming languages.

Simon Portegies Zwart in his paper[15] opined that the popularity of using computing
in research has led to increased carbon emissions, particularly in computationally-oriented
astrophysical research. Despite the ecological impact of inefficient code, Python’s rapid pro-
totyping abilities and the availability of desktop workstations have made it the most popular
language among astronomers. To reduce the carbon footprint, running code on GPUs or
porting it to a supercomputer are alternatives. Alternatively, abandoning Python for more
environmentally friendly languages such as Julia, Rust, or Swift, which offer the flexibility
of Python with the performance of compiled C++, can improve run-time and reduce CO2

emissions.

2.2 Random Forests Based Software Consumption Profiling

Mohamed Amine Beghoura et al. proposed in their paper[16], a new software quality called
green efficiency to promote energy optimization techniques. The goal was to reduce energy
consumption caused by computation, storage, and communication workloads. An approach
to establish an energy profiling tool was also proposed to locate energy-consuming portions
of code and estimate energy usage on different hardware configurations and devices. The
approach used Random Decision Forests to develop a model of energy consumption, which
eliminated noise from other running applications and was adaptable to different platforms.
The authors also suggested that a green in-use quality model could enhance sustainability
issues during the final usage stage of the software.

5



2.3 Deep Learning Based Software Consumption Profiling

Muhammed Maruf proposed in his paper[17] a SEC (Software Energy Consumption) profil-
ing method based on DNN (Deep Neural Networks) and tested it on 14 open-source projects
along with Random Forest. The results showed that DNN had higher accuracy than Ran-
dom Forest, and the number of hidden layers in DNN was found to be crucial for creating
reliable models. The accuracy of the profiling was not directly proportional to the number
of hidden layers and depended on the type and scale of the datasets. The author sugges-
ted that tuning methods could be investigated to further increase the success of the profiling.

I plan to utilise the Computer Language Benchmark Game[14] repository to systemat-
ically run, measure, and compare the energy, time, and memory efficiency of the software.
Further, I plan to estimate the software efficiency using various Machine Learning tech-
niques. In particular, at first I wish to profile the software using a Random Forest Based
Consumption Profiling (section 2.2) and observe the results. Thereafter, I wish to experi-
ment with the Deep Learning Based Software Consumption Profiling (section 2.3) to have a
comparative study of energy consumption and attempt to identify where this efficiency can
be improved.

3 The Project

Figure 2: Mind Map of the Project
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3.1 Metrics for Software Energy Consumption

The first step of the project will be to understand and summarise the metrics for software
energy consumption. This will involve researching the different metrics used by the Green
Software Foundation and other selected resources to estimate the energy consumption of
software. The focus will be on metrics that are relevant to computing resources at CERN.
The metrics will be used to establish a baseline for the energy consumption of the LHC soft-
ware and the selected machine learning algorithms for data compression. The core metrics
that the Green Software Foundation follows are: Carbon Efficiency, Energy Efficiency, Car-
bon Awareness,Hardware Efficiency, Measurement, Climate Commitments. We can relate
the software efficiency to these metrics as:

1. Carbon Efficiency: By optimizing code, reducing computations, and minimizing re-
source usage, software can reduce carbon emissions.

2. Energy Efficiency: By optimizing code, reducing resource usage, and minimizing idle
time, software can reduce energy consumption.

3. Carbon Awareness: With tools like ML CO2 Impact [18] to measure carbon footprint,
we can take steps to reduce carbon emissions.

4. Hardware Efficiency: By measuring the hardware efficiency using the tool Green
Algorithms [19], we can optimize software to work efficiently on different hardware thereby
reducing the energy consumption.

5. Measurement: Along with energy consumption and carbon emissions, we can measure
the Software Carbon Intensity [20] (SCI) Specification to identify areas where software can
be made more efficient.

6. Climate Commitments: By setting goals to reduce carbon emissions and implementing
sustainability practices, we can reduce the environmental impact of software.

3.2 Familiarisation with Software Frameworks and Algorithms

To estimate the energy consumption of the LHC software and the selected machine learning
algorithms for data compression, it is essential to be familiar with the software frameworks
and algorithms. Therefore, the next step will be to become familiar with running and debug-
ging the selected software frameworks and algorithms. This will involve setting up the neces-
sary software tools and resources, going through the software codebase and the underlying
technologies to develop an in-depth understanding of the scientific software. Primarily, I plan
to work on the software xAODAnaHelpers[21]. I have read through its documentation[22]
and I feel comfortable with the codebase that is written in C++. Thereafter, I plan to delve
deeper into understanding the machine learning algorithm used in the software Baler[23] for
data compression and try to further optimize it after brainstorming the Python codebase.
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3.3 Testing and Visualisation

After familiarising with the software frameworks and algorithms, the next step will be to
set up tests and visualisation for applying metrics to the selected software. This will involve
selecting a representative subset of data and running it through the software while recording
energy consumption and other relevant metrics. The results will be visualised using Jupyter
Notebooks using tools such as numpy, pandas, matplotlib, seaborn and other popular visual-
isation libraries, making it easier to understand and communicate the results to stakeholders.

To test the software and relate the results with the metrics of the Green Software Found-
ation, I need to measure the energy consumption and carbon emissions of the software. This
can be done using tools that measure the energy consumption of the CPU, memory, and
disk, and then calculating the carbon emissions based on the energy source used to power the
hardware. I can then analyze the results and identify areas where the software can be made
more efficient, and relate those results to the metrics of the Green Software Foundation.To
set up tests and visualization for applying metrics to the software, I will follow these steps:

1. Select the metrics that are relevant to the software under evaluation. These will in-
clude code complexity, code coverage, performance, memory usage, and more.

2. Define the test cases that will be used to evaluate the software system. These will
include unit tests, integration tests, performance tests, and regression tests.

3. Implement the test cases and execute them against the software system. This will
generate data that can be used to evaluate the metrics.

4. Analyze the results of the tests and the metrics to identify areas where the software
can be improved. This will include identifying performance bottlenecks, areas of the code
that are complex and difficult to maintain, and more.

5. Visualize the results of the tests and the metrics to communicate the findings to
stakeholders. This will include creating charts, graphs, and other visualizations.

Overall, setting up tests and visualization will help identify areas for improvement and
provide insights for estimation regarding the energy cost of the scientific software.

3.4 Identify and Apply Possible Improvements

Based on the results from the previous subsection, I will identify possible improvements to
the software algorithms. Moreover, I will apply Software Profiling techniques in particu-
lar the Random Forest Model and the Deep Learning Model, as discussed in the Research
Methodology and Inspirations section, to profile the software. On successfully profiling the
software, I will have the chance to make small changes to the code to make it more efficient
and evaluate the possible savings. This will involve optimising the code to reduce unneces-
sary computations and reduce energy consumption.
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As a software developer, I understand the importance of continuous testing and monit-
oring the performance of my application after small tweaks and changes. To achieve this, I
will follow the TDD (Test Driven Development) and BDD (Behavior Driven Development)
approach. Here is a detailed workflow of my approach:

1. Identify the requirements: I will start by identifying the requirements of the software
and the machine learning algorithm, which will help me to determine what features and
functionality to test.

2. Create test cases: Based on the requirements, I will create a set of test cases using
the TDD approach. These test cases will be ideally failing tests, designed to test each func-
tionality of the software and the ML algorithms.

3. Run the test cases: Once the test cases are created, I will run the tests to ensure that
the everything is functioning as expected.

4. Visualize the outputs: I will use various visualization tools to analyze the test results
and identify any errors or issues. This will help me to pinpoint any possible bottlenecks.

5. Monitor the software stack: I will continuously monitor the software stack, (i.e. the
software and the machine learning algorithm) to ensure that the application is running
smoothly.

6. Monitor the hardware stack: I will also monitor the hardware stack to ensure that
the application is running optimally. This will include checking for any hardware issues or
performance bottlenecks.

7. Monitor the run-time of the software: I will continuously monitor the run-time of
the application to identify any issues with its performance. This will include tracking the
software’s response time, memory usage, and CPU utilization.

8. Perform experiments on data compression: I will perform experiments on the machine
learning algorithms for data compression to identify any possible optimizations that can be
made to the algorithm in particular or the software in general.

9. Prepare system statistics: To help me identify any possible bottlenecks, I will prepare
a set of system statistics using a combination of tabulated and diagrammatic representations.

10. Analyze the statistics: I will analyze the statistics to identify any performance issues
or bottlenecks that need to be addressed.

11. Address any issues: Based on the analysis of the statistics, I will address any issues
or bottlenecks that have been identified. This may involve making changes to the software
stack, hardware stack, or the application itself.
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12. Repeat the process: I will continue to repeat this process, making any necessary
changes and optimizations until the software is performing optimally.

Summarising the above points, to ensure the optimal performance of the software, I will
follow a continuous testing and monitoring approach. First, I will identify the software and
machine learning algorithm requirements. Then, I shall create test cases using the Test
Driven Development (TDD) approach and run them to detect any errors or issues. The
TDD approach in simpler terms, is designing test cases, preferably failing tests and then
make relevant modifications to make the tests pass by refactoring the code and repeating
this step in a loop. Essentially, TDD ensures that the software behaves as intended, and any
unexpected behavior is identified and corrected in due time. It is similar to the scientific
method, where experiments are conducted to test hypotheses and verify results. Next,
I shall visualize the outputs in a Jupyter Notebook and monitor both the software and
hardware stack to ensure smooth performance. I will keep an eye on the run-time and
perform experiments on data compression to optimize the algorithm. Eventually, I will
prepare a system statistics to identify performance issues, analyze them, and make necessary
changes until the software is performing optimally.

Figure 3: TDD and BDD Testing Methodologies
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3.5 Vary Platforms and Job Submission Systems

Finally, I will vary platforms and job submission systems to investigate the impact of different
computing architectures and job submission systems on energy efficiency. This will involve
testing the software on different platforms, such as CPU and GPU and evaluating their
energy consumption under different job submission systems, such as batch processing and
interactive mode.

The purpose of varying the platforms is to identify the most energy-efficient architecture
for running the software. For instance, GPUs are known to be highly efficient for running
certain types of computational tasks compared to CPUs. By testing the software on both
platforms, I can determine which architecture offers the best balance between performance
and energy efficiency.

Additionally, I will also investigate the impact of different job submission systems on
energy efficiency. Batch processing, for instance, allows users to submit multiple jobs at
once, while interactive mode allows for real-time monitoring of job progress. By evaluating
the energy consumption of the software under different job submission systems, I can identify
the most energy-efficient way of submitting jobs.

Overall, the variation of platforms and job submission systems will help me identify the
best combination of hardware and software configurations to achieve the highest level of
energy efficiency.

4 The Road-Map

I am fully committed to dedicating 30 hours a week for 16 weeks starting on June 1st, 2023,
with no major commitments during that time. My timezone is Indian Standard Time (IST)
which is +05:30 hours from Greenwich Mean Time (GMT). My working hours are expected
to overlap with that of my mentor any time post 2:30 PM GMT. My preferred working
schedule is during the evenings and late nights when I can work undisturbed. This will
provide ample time for me to research, estimate, experiment, and optimize the software and
machine learning algorithms selected for the project. I am fully committed to achieving all
the milestones and deliverables on time, and I am excited about making a significant impact
on the project’s success.

4.1 Deliverables

Below is an exhaustive list of the deliverables from my end:

1. A short report summarizing the metrics for software energy consumption, with a focus
on computing resources at CERN.

2. A documented process for running and debugging the selected software frameworks
and algorithms.

3. A set of tests and visualizations for applying metrics to the selected software, imple-
mented in a Jupyter Notebook.
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4. A report summarizing the results of running tests and visualizing metrics.

5. Identify possible improvements and create a documented process for applying them to
the software, followed by a report on the results of the improved software in terms of energy.

6. Variations of the software tested on different platforms, architectures and job submis-
sion systems, with a report summarizing the results of each test.

4.2 Expected Impact of the Project

The expected impact of the project will be significant in several ways:

1. The project will provide valuable insights into the software energy consumption of the
selected frameworks and algorithms, particularly in the computing resources at CERN. This
will help researchers and developers to optimize their code and reduce energy consumption,
leading to cost savings and a more sustainable computing environment.

2. It will contribute to the development of effective software energy consumption metrics,
which can be applied to a wide range of software applications beyond the selected frameworks
and algorithms. This will advance the field of software engineering and energy efficiency,
providing a better understanding of how software development practices can impact energy
consumption.

3. The project will demonstrate the importance of considering energy consumption as a
critical performance metric in software development. By applying metrics and visualization
techniques to evaluate software energy consumption, the project will provide a practical and
accessible approach for developers and scientists to optimize their code and reduce energy
consumption.

Overall, the expected impact of the project will be to raise awareness of the importance of
energy efficiency in software development, contribute to the development of effective energy
consumption metrics, and provide practical solutions for optimizing code and reducing energy
consumption in computing environments.

4.3 Community Bonding Period

Being part of a community and contributing to it is something I value highly. I plan to:

1. Reading and familiarizing myself with the project documentation, codebase and ma-
chine learning algorithms used.

2. Discussing, investigating and reading related works and literature in greater depth.

3. Writing blog posts and documenting my progress to share with the community.
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4.4 Coding Period

Figure 4: Distribution of Time

4.4.1 Week 1-2 (June 1 - June 14)

1. Read and understand the documentation related to software energy consumption met-
rics and computing resources at CERN.

2. Research and gather information about the selected software frameworks and algorithms.
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4.4.2 Week 3-4 (June 15 - June 28)

1. Become familiar with running and debugging the selected software frameworks and
algorithms.

2. Set up the environment for the selected software frameworks and algorithms.

4.4.3 Week 5-6 (June 29 - July 12)

1. Identify and select the appropriate metrics for software energy consumption.

2. Set up tests and visualization for applying metrics to the selected software.

4.4.4 Week 7-8 (July 13 - July 26)

1. Run tests on the selected software.

2. Visualize results and generate reports using Jupyter Notebooks.

3. Analyze the results and identify areas for improvement.

4.4.5 Week 9-10 (July 27 - August 9)

1. Implement improvements and optimizations to the software and algorithms.

2. Run tests again and compare the results with the previous ones.

4.4.6 Week 11-12 (August 10 - August 23)

1. Vary platforms and job submission systems to analyze the impact on software energy
consumption.

2. Analyze and compare the results obtained from varying platforms and job submission
systems.

4.4.7 Week 13-14 (August 24 - September 6)

1. Finalize the project and prepare the documentation and report.

4.4.8 Week 15-16 (September 7 - September 20)

1. Buffer week for unforeseen situations or delays.
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4.5 Post GSoC

As someone who is deeply passionate about the work that the organisation is doing, I cannot
imagine simply walking away once the GSoC project is over. Instead, I am committed to
staying in touch with my mentors and fellow contributors, and to actively participating in
any way that I can. Whether that means continuing to contribute to the project, sharing
my experiences with other students who are considering participating in GSoC, or simply
staying engaged with the organisation’s work, I am eager to remain a part of this community
long after the summer comes to a close. I truly believe that the work that we are doing has
the potential to change the world, and I am excited to be a part of that mission for many
years to come.

5 Conclusion

Since my high school days, I’ve been captivated by the mysterious and awe-inspiring world
of physics. There’s just something about the way the universe works that never ceases to
amaze me, from the fundamental principles of Newtonian Mechanics to the mind-bending
concepts of Thermodynamics and Modern Physics. And there’s no place on Earth where
this fascination is more alive and tangible than at CERN.

Working at CERN has been my ultimate dream and aspiration for as long as I can re-
member. The opportunity to be a part of a team of brilliant minds from all around the
world, all working towards answering some of the most fundamental existential questions
that humanity has ever asked - it’s the stuff of dreams.

But what really drives me is the sheer enormity of the task at hand. To even begin to
scratch the surface of understanding how the universe originated is a monumental feat that
will require the best and brightest minds from every corner of the globe. And that’s where
I want to come in - I want to be a part of that effort, no matter how small my contribution
may be.

I strongly believe that the research and methodology presented in my proposal have the
potential to make a real impact on high throughput scientific software making them more
sustainable and energy efficient. I am eager to see where this work will take us. But this is
not just about research, coding or software development. This is about taking responsibility
for the impact that our technology has on the environment, and doing everything we can to
reduce that impact. I believe that together, we can develop scientific software that is not
only efficient and effective, but also environmentally sustainable. I believe we can build a
future where technology and the environment can coexist in harmony, and where we can all
thrive.

So as I embark on this journey towards CERN, I am filled with a sense of gratitude for
having come this far and this close. But most of all, I am filled with an unquenchable passion
and hunger to be a part of something truly special - something that has the potential to
change the world as we know it.
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6 Appendix

6.1 Legacy Software Profiling Tools

Daniele D’Agostino et al. summerised in their literature[24] many tools for profiling and
analyzing software performance and energy consumption, such as PAPI[25], PowerPack[26],
Score-P[27], Extrae[28], Paraver[29], and EACOF[30]. These tools allow developers to gather
performance related data, including energy and power values, to understand the relationship
between software performance and processor events. Some tools, like EProf[31], even offer
fine-grained attributions of energy consumption to specific functions or software segments.
However, most of these tools are not actively maintained, which makes them difficult to find
and run. MuMMI[32] was a project that aimed to integrate existing tools like PAPI and
PowerPack for facilitating software measurement, modeling, and prediction for multicore
systems, but it suffered the same fate of being abandoned.

David Abdurachmanov et al. in their paper[33] presented techniques and tools that gave
insight into energy consumption at different levels. It introduced IgProf[34], an open source
profiling tool that provides function-level energy profiling capabilities. A comparison of the
energy performance of x86-64 and ARMv7 processors confirmed the potential of ARMv7 for
building efficient HTC High Throughput Computing systems should server grade systems be
developed based on these chips. Moreover the authors added a statistical sampling energy
profiling module which provides function level energy cost distribution[35].

6.2 Modelling Time-Series of Software Energy Consumption

Stephen Romansky et al, in their paper[36] examined the effectiveness of time series regres-
sion models in predicting software energy consumption. On comparative study, they found
that along with deep learning models, simpler linear regression models were equally effective
in many cases. The time series-based models were accurate both per step and cumulatively
across the entire test run. They also observed that stateful time series models, like LSTMs,
which maintained state/memory about the past, predicted energy consumption better than
stateless models like Support Vector Regression (SVR).

6.3 Code Refactoring

Cagri Sahin et al. in their empirical study[37], investigated the impact of applying refact-
orings on energy usage in 9 real Java programs of varying sizes and characteristics. They
considered 197 instances of 6 commonly used refactorings and generated over 350 gigabytes
of data from 10,300 executions across two separate platforms. Their findings showed that
all of the considered refactorings can statistically significantly impact the energy usage of an
application, and that they have the potential to both increase and decrease energy usage.
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