
Improving the Bundle Creator

About

Contributor : Srirupa Datta
Organization : KDE (Krita)
Project Size : 350 Hours
Project Timeline : Standard

Introduction and Motivation

The primary format to share resources in Krita is a Resource Bundle, which is a
compressed file containing all the resources together. It also contains some other
information like metadata and a manifest so Krita can check there’s no errors in the file.
Krita’s Bundle Creator allows one to create their own bundle from the resources of their
choice. The project aims to improve the user interface of the current Bundle Creator,
and allow the ability to edit bundles (which is currently not supported in Krita).

Requirements for the Bundle Creator:

1. Gridview to view all the resources
2. Filter available resources by name or tag before selecting them
3. Add custom tags to selected resources
4. Reload last bundle data when opened - particularly useful when making a bundle

for other people.
5. Resizable Bundle Creator - this would be useful for users who want to spend

more time creating a new bundle
6. Ability to edit Bundles - this needs to be discussed further
7. Create a separate Menu entry called Bundle Creator. Move Manage Resource

Libraries , Manage Resources and Bundle Creator from Menu > Settings to Menu
> Resources



Bundle Creator UI

The new Bundle Creator would look like an installation wizard with four pages which can
be navigated using the Next and Back buttons, as well as buttons on the left side panel.





Project Goals

● Bundle Creator should look like an installation wizard like dialog
● Krita should be able to save and load previous bundle information
● Krita should be able to edit bundles in the Bundle Creator

Implementation

1. Create new UI file and a superclass for common UI

This will contain the UI which is common to both the Resource Manager and the Bundle
Creator. The wdgResourcePreview.ui file will contain the common template that will
be used by both. And KisResourcePreview.h will implement the functionalities. It
would have the following structure:

namespace Ui

{

class WdgResourcePreview;

}

class ResourcePreview : public QWidget

{

Q_OBJECT

public:

ResourcePreview(int type, QWidget *parent = 0);

~ResourcePreview();

private Q_SLOTS:

void slotResourceTypeSelected(int);

void slotTagSelected(int);

void slotStorageSelected(int);

void slotFilterTextChanged(const QString& filterText);

void slotShowDeletedChanged(int type, int newState);



public:

QString getCurrentResourceType();

QModelIndexList geResourceItemsSelected();

private:

int getCurrentStorageId();

private:

Ui::WdgResourcePreview *m_ui;

KisResourceTypeModel *m_resourceTypeModel {0};

KisStorageModel *m_storageModel {0};

QMap<QString, KisTagFilterResourceProxyModel*>

m_resourceProxyModelsForResourceType;

KisResourceThumbnailPainter m_thumbnailPainter;

};

The methods and slot functions will be implemented in the KisResourcePreview.cpp.
To add the common UI to both the Resource Manager and the Bundle Creator, the new
widget class has to be added.

// For Resource Manager

ResourcePreview *resourcePreview = new ResourcePreview();

ui->splitter->addWidget(resourcePreview);

// For Bundle Creator

ResourcePreview *resourcePreview = new ResourcePreview();

ui->splitter->addWidget(resourcePreview);

The wdgResourcePreview.ui file would look something like this:



2. Redesigning the Bundle Creator UI

The Bundle Creator would be redesigned from a normal Qdialog to a Qwizard with 4
pages. This is what the new Bundle Creator wizard class would look like:

namespace Ui {

class WzdCreateBundle;

}

class WzdCreateBundle : public QWizard, public KoDialog

{

Q_OBJECT

public:

WzdCreateBundle(QWidget *parent = 0);

~WzdCreateBundle();

public Q_SLOTS:

void openSelectResources();

void openSelectTags();

void openMetadataInfo();

void openSelectSaveLocation();



private:

Ui::WzdCreateBundle *m_ui;

PageCreateBundleResourceChooser *pageSelectResource;

PageCreateBundleTagChooser *pageSelectTags;

PageCreateBundleMetadataInfo *pageMetadataInfo;

PageCreateBundleSaver *pageSelectSaveLocation;

};

The Bundle Creator wizard will have four pages added to it. We will create four classes
that inherit QWizardPages to add these pages to the wizard. The left side of the wizard
will have four buttons for easy navigation to the pages. This will be done by setting the
side widget for the Bundle Creator using:

setSideWidget(sideWidget);

This is how the side widget class would look like:

namespace Ui {

class SideWdg;

}

class SideWdg : public QWidget

{

Q_OBJECT

public:

explicit SideWdg(QWidget *parent = 0);

~SideWdg();

signals:

void openSelectResourcesClicked();

void openSelectTagsClicked();

void openMetadataInfoClicked();

void openSelectSaveLocationClicked();

private:

Ui::SideWdg *ui;

};



The four QWizardPage classes have been described below:

1. KisPageCreateBundleResourceChooser.cpp/h with
PageCreateBundleResourceChooser.ui file

This class will deal with the selection of resources for the new bundle.

namespace Ui

{

class PageCreateBundleResourceChooser;

}

class PageCreateBundleResourceChooser : public QWizardPage

{

Q_OBJECT

public:

PageCreateBundleResourceChooser(QWidget *parent = 0);

~PageCreateBundleResourceChooser();

QList<int> getSelectedResources();

public Q_SLOTS:

void slotResourcesSelectionChanged(QModelIndex selected);

private Q_SLOTS:

void slotSelectedResourcesSelectionChanged(QModelIndex selected);

void slotRemoveSelectedResources();

void slotNext();

private:

Ui::PageCreateBundleResourceChooser *m_ui;

QList<int> m_selectedResourcesIds;

QMap<QString, KisTagFilterResourceProxyModel*>

m_resourceProxyModelsForResourceType;

};



2. KisPageCreateBundleTagChooser.cpp/h with
PageCreateBundleTagChooser.ui file

This class will deal with the selection of tags for the new bundle.

namespace Ui

{

class PageCreateBundleTagChooser;

}

class PageCreateBundleTagChooser : public QWizardPage

{

Q_OBJECT

public:

PageCreateBundleTagChooser(QWidget *parent = 0);

~PageCreateBundleTagChooser();

QList<int> getSelectedTags();

private Q_SLOTS:

void addSelected();

void removeSelected();

void resourceTypeSelected(int idx);

void slotNext();

void slotBack();

private:

Ui::PageCreateBundleTagChooser *m_ui;

QList<int> m_selectedTagIds;

};



3. KisPageCreateBundleMetadataInfo.cpp/h with
PageCreateBundleMetadataInfo.ui file

This class will deal with entering the metadata information for the new bundle.

namespace Ui

{

class PageCreateBundleMetadataInfo;

}

class PageCreateBundleMetadataInfo : public QWizardPage

{

Q_OBJECT

public:

PageCreateBundleMetadataInfo(QWidget *parent = 0);

~PageCreateBundleMetadataInfo();

QString bundleName() const;

QString authorName() const;

QString email() const;

QString website() const;

QString license() const;

QString description() const;

QString previewImage() const;

private Q_SLOTS:

void getPreviewImage();

void slotNext();

void slotBack();

private:

Ui::PageCreateBundleMetadataInfo *m_ui;

QString m_previewImage;

};



4. KisPageCreateBundleSaver.cpp/h with PageCreateBundleSaver.ui file

This class will deal with entering the location where the new bundle will get saved.

namespace Ui

{

class PageCreateBundleSaver;

}

class PageCreateBundleSaver : public QWizardPage

{

Q_OBJECT

public:

PageCreateBundleSaver(QWidget *parent = 0);

~PageCreateBundleSaver();

QString saveLocation() const;

private Q_SLOTS:

void accept() override;

void selectSaveLocation();

void saveToConfiguration(bool full);

void slotBack();

private:

bool putResourcesInTheBundle(KoResourceBundleSP bundle);

void putMetaDataInTheBundle(KoResourceBundleSP bundle) const;

QString createPrettyFilenameFromName(KoResourceSP resource) const;

Ui::PageCreateBundleSaver *m_ui;

KoResourceBundleSP m_bundle;

};



2. Save and Load previous info in the Bundle Creator

Create functions in the WzdCreateBundle.h/cpp to load previous bundle information
on opening the Bundle Creator.

WzdCreateBundle::void loadUISettings(const QString &prefix = QString());

WzdCreateBundle::void saveUISettings(const QString &prefix = QString());

3. Editing Bundles inside the Bundle Creator

Create a dialog with all the existing bundles listed. Choosing a menu entry and clicking
a button, opens up the bundle creator filled with all information loaded from the
bundle(which was selected). Then on pressing OK or Save, the bundle's information gets
saved. Depending on where one saves the bundle, and whether the metadata info is
changed, the existing bundle is rewritten or a new bundle is created.

Benefits

● Users can filter the resources to be selected by tags or by name.
● Existing bundles can be edited.
● Bundle Creator will retain previous bundle information. This is particularly useful

when making a bundle for other people.
● A resizable Bundle Creator Window will be useful for users who want to spend

more time creating a new bundle. Looking into a medium sized window is not
always convenient.



Timeline

Week Timeline Task

May 4 Accepted GSoC contributor projects announced

May 4 - May 20 Community bonding period

- Learn about the MVC and MVVM design patterns
- Explore Krita’s Resource Management System for understanding the
cause of resource duplication

May 29 Coding Period Begins

1 May 29 - Jun 4 - Design KisResourcePreview.h properly with all the relevant signals, slots
and methods (as mentioned above)
- This header file will contain classes responsible for the common UI
between the Resource Manager and the Bundle Creator.

2 Jun 5 - Jun 11 - Implement the .cpp file for the common UI
- Reflect the relevant changes in the DlgResourceManager.h/cpp
(Resource Manager Dialog)

3 Jun 12 - Jun 18 - Design header files for the new Bundle Creator wizard
- Discuss about redesigning the UI for the tag chooser

4 Jun 19 - Jun 25 - Implement the .cpp files for the Resource Chooser
- Implement the .cpp files for the Tag Chooser
- Implement the ability to add custom tags to selected resource items5 Jun 26 - Jul 2

6 Jul 3 - Jul 9 - Implement the .cpp files for the Bundle Information Dialog
- Discuss what to summarize in the Save to Dialog
- Implement the .cpp files for the Save to Dialog

Jul 10 Mentors and Contributors start submitting midterm evaluations

Jul 14 Midterm evaluation deadline

7 Jul 17 - Jul 23 - Add support for saving previous bundle Information
- Discuss details about adding support for editing bundles

8 Jul 24 - Jul 30 - Design the user interface for the Bundle Editor
- Implement the functions for the Bundle Editor
- Integrate it with the Bundle Creator9 Jul 31 - Aug 6

10 Aug 7 - Aug 13

11 Aug 14 - Aug 20 - User testing
- Rewriting the documentation for the Bundle Creator

12 Aug 21 - Aug 28 - Clean up work, complete unfinished tasks

Aug 28 End of Google Summer of Code



About Me

Name: Srirupa Datta
IRC: Srirupa Datta (@sriru:libera.chat)
KDE identity: srirupa
Email: srirupa.sps@gmail.com
Krita Artists: Srirupa_Datta
GitHub: Github
LinkedIn: srirupa-datta
University: Jadavpur University
Country: India
Primary language: English, Bengali, Hindi

Communication

I plan to communicate in the IRC channel on a regular basis (maybe once every 2-3
days) to update about my progress and clarify my doubts. During the weekly meetings
at Krita, I would summarize the work I did during the week, and the challenges I am
facing. I will also post a more formal blog update to PlanetKDE once every month and
continue updating my progress on the Krita-artists forum on the post that I’ve already
created. Link: Improving the Bundle Creator

Prior Contributions

Being an artist who is interested in coding, I was excited to contribute to Krita, and went
on to learn Qt. Since then I have been fixing minor bugs in Krita whenever I get time.
The issues that I’ve fixed are listed below:

● Pull Request !801
Added a warning dialog whenever a file with multiple transparency masks is
exported to a file format that does not support multiple transparency masks (such
as Photoshop) preventing silent loss of data.

● Pull Request !894
Fixed a bug that made Krita freeze when splitting layers on a colorize mask by
automatically converting the colorize mask to a paint layer which is faster to split.

https://invent.kde.org/srirupa
mailto:srirupa.sps@gmail.com
https://krita-artists.org/u/srirupa_datta/summary
https://github.com/srirupa19
https://www.linkedin.com/in/srirupa-datta/
http://www.jaduniv.edu.in/
https://krita-artists.org/t/bundle-creator-improving-the-ui-ux-design/57405
https://invent.kde.org/graphics/krita/-/merge_requests/801
https://invent.kde.org/graphics/krita/-/merge_requests/894


● Pull Request !883
Fixed a bug that showed the wrong preview for brushes that did not have a
preview available by modifying the order of drawing things on the preview view.

● Pull Request !854
Removed the work recursively button which was unnecessary and ambiguous
and cleaned up the code for that feature, reducing the code complexity in
transform tool

● Pull Request !795
Reordered the touch docker to make the display more intuitive for users.

● Pull Request !886
Swapped the y axis labels in the transfer curve of brush mix parameter

I have also contributed to Krita as a part of Season of KDE 2022, where I worked on
adding the Perspective Ellipse Assistant Tool to Krita. The merge request can be found
here.

https://invent.kde.org/graphics/krita/-/merge_requests/883
https://invent.kde.org/graphics/krita/-/merge_requests/854#note_249413
https://invent.kde.org/graphics/krita/-/merge_requests/795
https://invent.kde.org/graphics/krita/-/merge_requests/886
https://invent.kde.org/graphics/krita/-/merge_requests/1343

