
GSoC’24 Proposal - CircuitVerse

Project 4 - CircuitVerse Practice section

1

Table of Content

Project 4 - CircuitVerse Practice section 1
Table of Content 2
Personal Details 3
About Me 3
Motivation and Interest 4
Previous open source participations 5
Commitment 5
Contributions so far 6
Proposal 6
Circuitverse Practice section 7

Synopsis 7
DB setup for the system 9
Controllers 12
Frontend 19

Admin and moderator pov 19
User’s pov 26

Key Deliverables 33
Future improvements 33
Project Plan 34
Testing and verification 37
Major milestone 37
Additional Information 37
Mentors 37

2

Personal Details

Name Jaydip Dey

Course Computer Science and Engineering

Email jaydipdey2807@gmail.com

Github https://github.com/jaydip1235

LinkedIn https://www.linkedin.com/in/jaydip-dey/

Phone +919875490885

Current Country: India

Link to Resume / CV:​ https://drive.google.com/file/d/1ywaTQ-7sj7RMDxbV67whjgT_b
6buCq8q/view?usp=sharing

Achievements https://drive.google.com/drive/u/0/folders/1a3WOnKpL0INtFs27
_IKlvrbNJTW0xCjs

About Me

I am Jaydip Dey, currently employed as an SDE-1 at Optum, a Fortune 500
company. I graduated with a Bachelor of Engineering in Computer Science and
Engineering from Jadavpur University, Kolkata, achieving First Class Distinction.
In 2023, I founded the Product Club at my college, where we developed a platform to
aid in interview preparation through personalised AI-driven conversations based on
uploaded resumes, job descriptions, or audio inputs. You can find more details about
this here .

As a results-oriented Software Developer and Coder, I possess a solid track record
in software development and problem-solving. Throughout my college years, I
actively participated in various hackathons, ranging from intercollege to national and
international levels. Notably, I secured the First Runner-up position in the Intel
OneAPI GenAI LLM Challenge held in Bangalore, competing against over 1000
participants across India. Additionally, I was recognized as an Incode'23 Global

3

https://github.com/jaydip1235
https://www.linkedin.com/in/jaydip-dey/
https://drive.google.com/file/d/1ywaTQ-7sj7RMDxbV67whjgT_b6buCq8q/view?usp=sharing
https://drive.google.com/file/d/1ywaTQ-7sj7RMDxbV67whjgT_b6buCq8q/view?usp=sharing
https://drive.google.com/drive/u/0/folders/1a3WOnKpL0INtFs27_IKlvrbNJTW0xCjs
https://drive.google.com/drive/u/0/folders/1a3WOnKpL0INtFs27_IKlvrbNJTW0xCjs
https://www.optum.com/en/
https://www.linkedin.com/posts/prod-club-ju_juproc-innovation-entrepreneurship-activity-7124777775713988610-ScEm?utm_source=share&utm_medium=member_desktop

Finalist, showcasing my ability to excel in global competitions and tackle diverse
challenges. My other achievements include a 5⭐ rating on Codechef, securing top
positions in over 15 hackathons, as well as being a top 100 participant in the
Amazon ML Challenge and a finalist in SIH'22, highlighting my dedication to
innovation and excellence. As a former Software Development Engineer Intern at
Mercor, I gained valuable hands-on experience contributing to real-world projects
and significantly contributing to the team's success.

P.S.-All the citations of my achievements are in the Personal details section.

Furthermore, my experience as an Instructor at Placewit allowed me to deepen my
expertise in full stack and MERN stack development while effectively imparting this
knowledge to others. During my tenure as a Teaching Assistant at Crio.do, I refined
my communication and mentoring skills by guiding students in mastering complex
technical concepts.

I have also served as a mentor for various open source events and twice as a judge
for Hack4Bengal, one of Eastern India’s largest hackathons. Additionally, I held the
role of chapter lead at GirlScript Kolkata, where I led a team in organising technical
events and seminars.

In terms of technical expertise, I primarily work with the MERN stack and Java
Spring. Additionally, I have also made some projects using Ruby on Rails and
Machine Learning, and have hands-on experience with Android and Kotlin, having
developed several basic applications. My dedication as a quick learner and hard
worker sets me apart from others in the field.

Motivation and Interest

I find the CircuitVerse really interesting because it's great for learning about digital
circuits. I like the Practice section because it helps students with different kinds of
questions organised neatly. This makes it easy to find what you need to study.

Since I've worked on CircuitVerse before and know its code well, I think I could work
on this project. I've had an idea before that's similar to this which motivates me more,
where there could be circuit design contests just like coding contests on websites
like codeforces or leetcode. Answers would be checked automatically, and people
would get points based on how well their circuits worked. Plus, I'm good with Vue.js
and Ruby on Rails, so I can handle the technical side of things without any trouble.

So, I'm excited about the opportunity to work on this project. It combines my interest
in digital circuits with my skills in programming, and I think I could make a valuable
contribution to making CircuitVerse even better.

4

https://mercor.io/
https://placewit.com/
http://crio.do
https://www.hack4bengal.tech/

Previous open source participations

I had submitted 3 proposals in GSoC’23 under Postman, Internet Health Report and
gprMax, but unfortunately none of the projects were selected.
Links of proposals are as follows: Postman , Internet Health Report , gprmax

But this time, I am submitting only 1 proposal.

Commitment

1. Are you planning any vacations during the GSoC period?

=> No, I don't have any vacations during the GSoC period.

2. How many classes are you taking during the GSoC period?

=> As I am not a student, I don't have any classes during the GSoC period.

3. Do you have any other employment during the GSoC period?

=> Yes, since I am a SDE-1 at Optum so I will be working there also. But it will
not be any problem since I have enough time when I can contribute to GSoC.
I'll manage my time effectively, draw on my diverse experiences, and maintain
open communication to ensure quality contributions to the project. Moreover
my current organisation (Optum) also encourages open source contribution,
so it will not be any problem.

4. How many hours per week do you expect to work on the project and what
hours do you tend to work?

=> During the Google Summer of Code period, I anticipate dedicating
approximately 20-25 hours per week to the project. My typical working hours
are flexible, but I tend to be most productive during the late morning to early
afternoon and then again at night. However, I'm open to adjusting my
schedule as needed to accommodate project meetings, mentor availability,
and collaborative work with other contributors.

5

https://summerofcode.withgoogle.com/media/user/891c05ea541c/proposal/gAAAAABl_7hQCVwo2lTIGFeDjnf3kgoKBlxhRTSvlsBP-JMB9hwLBoyWZplAAA7B1ZyTp_FbOfa9jM28z_7OyTf3a_OApW44HPv9lC0QJPDCEM_59ldBDAs=.pdf
https://summerofcode.withgoogle.com/media/user/891c05ea541c/proposal/gAAAAABl__dAB8ml9a17FRMnKp0Mk4sr86rhez3BUHztduFUwfGQyV6eA9aRgwttKy2MYASJw4cUmjiAyEkmPT_vdWX0YcmC3DnUQBkYdBAWr4_TGwDfCWU=.pdf
https://summerofcode.withgoogle.com/media/user/891c05ea541c/proposal/gAAAAABl__dAY6qwhNhkPFV4bgXhxQBO1RzVwvkCGjpxtQfsOTtUh-pXLjLUoB266Yaws2ioMxeuiOfQSBR1eYW5f9jo4OiozFGtZiG2NRt4EShfwofaRSI=.pdf

Contributions so far

SR Pull Request Status Repository

1 fix: placeholder added for login and signup Merged CircuitVerse

2 fix: signUp form ui layout fixed when alert is shown Merged CircuitVerse

Proposal

Overview:
A CircuitVerse Practice section to enhance learning, providing students with a
platform to practise a variety of questions conveniently. This feature aims to
accelerate learning and engagement by enabling users to attempt questions,
design circuits, and have their answers automatically verified.

The goals of the project:

1. Question Bank Management: Develop a Question Bank page categorising
questions into groups for easy browsing and practice. Users can filter
questions by group for focused practice.

2. Circuit Template: Each question will include a circuit boilerplate with
input/output probes and a pre-configured testbench for practical application.

3. Markdown Content: Implement support for adding and displaying questions
as markdown text for enhanced readability and flexibility.

4. Question Bank Moderator: Introduce a role, such as 'question_creator', for
selected CircuitVerse users to add and modify digital logic questions. Admins
will have the authority to assign this role to specific users.

5. Auto-verify Submitted Answers: Utilise the existing testbench feature in
CircuitVerse to automatically verify submitted answers against predefined
input/output, enhancing the learning experience.

6. Progress Dashboard: Create a personalised dashboard within the user
profile, showcasing submission history and progress. Users can opt to make
their dashboard public or private.

Technologies to be used:
1. HTML
2. CSS
3. JavaScript
4. Ruby on Rails

6

https://github.com/CircuitVerse/CircuitVerse/pull/4287
https://github.com/CircuitVerse/CircuitVerse/pull/4299

Circuitverse Practice section
Synopsis

There will be a separate navigation option in the top going to the question bank
page. This is shown below:

Now when user clicks on, it a page will open as follows:

In this page on the top row (just below the navbar), users will have 4 buttons to filter
according to the user’s perspective. It is of 4 types:

● All questions.
● Unattempted questions.
● Attempted question (It means that the user has attempted the question and

submitted the question at least once but all test cases are not passed).
● Solved questions (It means that the user has completely solved those

questions with all the test cases passed).

On the next row, there is a global search input whether an user can search on the
basis of any question name, question statements, partial statements, matching

7

keyword etc.

Beside that there will be 3 dropdowns where:

● View Dropdown : In this dropdown, user can select the view of the questions,
whether its a list view or Grid view

● Levels Dropdown : Here user can choose among various levels like Basic,
Intermediate, Hard etc.

● Topics dropdown : Filtering can be done on the basis of topic/tag added to
questions like sequential circuit, combinational circuit etc..

In this way users will get the ability to do extensive filtering and can apply multiple
filters at a time to make the search more specific. Pagination can be done if the
number of questions increases.

After that all the questions will be visible according to the view user has chosen. By
default all the questions will be visible to the user sorted according to the date added
in descending order (latest added question will come first).

A synopsis of how the grid view will look like is shown here

Below shows the screenshot of how the page would look like when the user wants to
see all his/her solved questions in the list view. In list view, more questions can be
accommodated in a page

A synopsis of how the above view will look like, is shown here

8

https://circuitverse-questions-grid.netlify.app/
https://circuitverse-questions-list.netlify.app/

DB setup for the system

We need to create six tables with the attributes and and modify the existing user
table:

Question_Bank:

create_table "question_banks", force: :cascade do |t|
t.string "name"

t.datetime "created_at", null: false

t.datetime "updated_at", null: false

end

Difficulty_Level:

create_table "difficulty_levels", force: :cascade do |t|
t.string "name"

t.integer "value"

t.datetime "created_at", null: false

t.datetime "updated_at", null: false

end

Category:

create_table "categories", force: :cascade do |t|

t.string "name"

t.datetime "created_at", null: false

t.datetime "updated_at", null: false

end

Question:

create_table "questions", force: :cascade do |t|

t.string "heading"

t.text "statement"

t.bigint "question_bank_id"

t.bigint "category_id"

t.bigint "difficulty_level_id"

t.jsonb "test_data"

t.jsonb "circuit_boilerplate"

t.datetime "created_at", null: false

t.datetime "updated_at", null: false

end

9

Question_Bank_Moderator:

create_table "question_bank_moderators", force: :cascade do |t|

t.bigint "uid"

t.bigint "question_bank_id"

t.datetime "created_at", null: false

t.datetime "updated_at", null: false

end

User table is updated with addition of 2 more attributes:

t.jsonb "submission_history", array: true, default: []
t.boolean "public", default: true

In the above, submission history will be an array of json objects where each object
will have the question_id referenced from question table , its status whether its
partially accepted or fully accepted or not accepted(0 test case passed on
submission) and the circuit data (so that user’s progress is saved when he opens the
question next time). And public boolean will indicate whether the questions
dashboard is private or public for the user

The following foreign key constraints are added to establish relationship between the
tables:

add_foreign_key "questions", "question_banks"

add_foreign_key "questions", "categories"

add_foreign_key "questions", "difficulty_levels"

add_foreign_key "question_bank_moderators", "users"

add_foreign_key "question_bank_moderators", "question_banks"

add_foreign_key "users", "question_banks", column: "uid"

The follow shows the ERD diagram of the system

P.S.- The user table contains more attributes that are already existing. All are not
shown due to lack of space

10

Adding Association between models.

- models/question_bank.rb
has_many :questions

has_many :question_bank_moderators

- models/difficulty_level.rb
has_many :questions

- models/category.rb
has_many :questions

- models/question.rb
belongs_to :question_bank

belongs_to :category

belongs_to :difficulty_level

- models/question_bank_moderator.rb
belongs_to :user

belongs_to :question_bank

11

- models/user.rb
has_many :question_bank_moderators

Controllers
Now the following controllers are added to ensure backend functionality

- controllers/difficulty_levels_controller.rb
class DifficultyLevelsController < ApplicationController

GET /difficulty_levels

def index

@difficulty_levels = DifficultyLevel.all

render json: @difficulty_levels

end

GET /difficulty_levels/:id

def show

@difficulty_level = DifficultyLevel.find(params[:id])

render json: @difficulty_level

end

end

- controllers/difficulty_levels_controller.rb
class DifficultyLevelsController < ApplicationController

GET /difficulty_levels

def index

@difficulty_levels = DifficultyLevel.all

render json: @difficulty_levels

end

GET /difficulty_levels/:id

def show

@difficulty_level = DifficultyLevel.find(params[:id])

render json: @difficulty_level

end

end

Above two controllers are for getting the difficulty levels and categories from the
database (Can be stored hard coded in the frontend also)

- controllers/questions_controller.rb

12

class QuestionsController < ApplicationController

GET /questions

def index

@questions = Question.all

render json: @questions

end

GET /questions/:id

def show

@question = Question.find(params[:id])

render json: @question

end

GET /questions/filter

Params: category_id, difficulty_level_id

def filter

@questions = Question.where(category_id: params[:category_id],

difficulty_level_id: params[:difficulty_level_id])

render json: @questions

end

GET /questions/status

Params: status (unattempted, attempted, solved)

def status

case params[:status]

when "unattempted"

Fetch questions with no submission history for the current user

@questions = Question.where.not(id: current_user.submission_history.map {

|submission| submission["question_id"] })

when "attempted"

Fetch questions with submission history for the current user

@questions = Question.where(id: current_user.submission_history.map {

|submission| submission["question_id"] })

when "solved"

Fetch questions with fully accepted status for the current user

@questions = current_user.submission_history.select { |submission|

submission["status"] == "solved" }

else

render json: { error: "Invalid status parameter" }, status: :bad_request

return

end

render json: @questions

end

13

GET /questions/search

Params: any random string

def search

search_query = params[:q]

if search_query.present?

@questions = Question.where("statement ILIKE ? OR heading ILIKE ?",

"%#{search_query}%", "%#{search_query}%")

render json: @questions, status: :ok

else

render json: { error: 'Search query cannot be blank' }, status:

:unprocessable_entity

end

end

GET /question/solved

Params: id

def users_who_solved

question = Question.find(params[:id])

users = User.joins(:submission_history)

.where("submission_history @> ?", [{ question_id: question.id,

status: 'solved' }].to_json)

render json: { count: users.count }

end

end

The aforementioned controllers include functionalities for retrieving all questions,
fetching a specific question, obtaining all questions filtered by category and difficulty
level, and retrieving questions filtered by status (from the perspective of the current
logged-in user). Additionally, there is another function designed to search for strings
similar to the headings or statements of all questions in the database and return the
matching ones. Also there is a function which gets the number of users who solved a
particular question

Also here when we send a get request to fetch question/s, all the other parameters,
including testData, circuit boilerplate etc. of a question goes to the frontend as
mentioned in the models.

Now we need another controllers for handling the submission of the user and also to
get the submission of a particular question from submission history

- controllers/submissions_controller.rb
class SubmissionsController < ApplicationController

14

before_action :authenticate_user!

Action to post user submission

def post_submission

submission_params = params.require(:submission).permit(:question_id,

:status,:circuit)

question_id = submission_params[:question_id]

status = submission_params[:status]

circuit = submission_params[:circuit]

Validate status

unless %w(unattempted attempted solved).include?(status)

return render json: { error: 'Invalid submission status' }, status:

:unprocessable_entity

end

Update or create submission history for the current user

current_user.submission_history ||= []

current_user.submission_history.delete_if { |submission|

submission['question_id'] == question_id }

current_user.submission_history << { 'question_id' => question_id, 'status'

=> status, 'circuit' => circuit }

if current_user.save

render json: { message: 'Submission posted successfully' }, status: :ok

else

render json: { error: 'Failed to post submission' }, status:

:unprocessable_entity

end

end

Action to get a submission of a particular question from submission_history

def show

question_id = params[:question_id]

Find the submission for the given question ID

submission = current_user.submission_history.find { |submission|

submission['question_id'] == question_id }

if submission

render json: submission, status: :ok

else

render json: { error: 'Submission not found' }, status: :not_found

end

end

15

end

A controller to get the submission status of questions of a particular user should be
there which will be used for personalised dashboard

- controllers/user_submissions_controller.rb
class UserSubmissionsController < ApplicationController

before_action :set_user

def index

@submissions = @user.submission_history

end

private

def set_user

@user = User.find(params[:id])

end

end

Another controller is needed to make the question dashboard of the user private or
public. We can add the following definition in

controllers/users/circuitverse_controller.rb
def update_public_status

status = params[:status]

if status == "public"

@user.update(public: true)

else

@user.update(public: false)

end

redirect_to user_path(@user)

end

16

All these controllers are for any users who are authenticated into circuit verse. Now
for authorization and for the question bank moderators to create, edit and delete
question, question banks , we need another controller.

But before that the admin needs to grant access to some users for becoming
question bank moderators for specific questions. We already have a field in the user
table : t.boolean "admin", default: false . So we will use this property,
so that admin can give access to question bank moderators.

Below is the following controller for that:

- controllers/users_controller.rb
class UsersController < ApplicationController

before_action :authenticate_superuser!

def grant_access

question_bank_id = params[:question_bank_id]

email= params[:email]

user = User.find_by(email: email)

moderator = QuestionBankModerator.new(uid:user.uid, question_bank_id:

question_bank_id)

if moderator.save

render json: { message: 'Access granted successfully' }, status: :ok

else

render json: { error: 'Failed to grant access' }, status:

:unprocessable_entity

end

end

private

def authenticate_superuser!

unless current_user && current_user.admin?

render json: { error: 'Unauthorized' }, status: :unauthorized

end

end

end

Now we add another controller related to all the actions that a question a bank
moderator can do with the question (CRUD) . It is shown below:

- controllers/question_bank_moderators_controller.rb

17

class QuestionBankModeratorsController < ApplicationController

before_action :authenticate_user!

before_action :set_question_bank_moderator, only: [:edit_question,

:delete_question, :add_question]

GET /question_bank_moderators/:id/edit_question

def edit_question

if @question_bank_moderator.present?

question = Question.find(params[:question_id])

question.update(question_params)

render json: question

else

render json: { error: "Unauthorized" }, status: :unauthorized

end

end

DELETE /question_bank_moderators/:id/delete_question

def delete_question

if @question_bank_moderator.present?

question = Question.find(params[:question_id])

question.destroy

head :no_content

else

render json: { error: "Unauthorized" }, status: :unauthorized

end

end

POST /question_bank_moderators/:id/add_question

def add_question

if @question_bank_moderator.present?

question = Question.new(question_params)

if question.save

render json: question, status: :created

else

render json: question.errors, status: :unprocessable_entity

end

else

render json: { error: "Unauthorized" }, status: :unauthorized

end

end

private

def set_question_bank_moderator

@question_bank_moderator = QuestionBankModerator.find_by(uid:

18

current_user.id)

end

def question_params

params.require(:question).permit(:heading, :statement, :question_bank_id,

:category_id, :difficulty_level_id, :test_data, :circuit_boilerplate)

end

end

Now after adding all the controllers, and adding proper routes in routes.rb file, the
backend will be able to process incoming requests from the client and send
appropriate responses.

Frontend

Admin and moderator pov

In the frontend, admin will be able to add the email id of the person to be added as a
question bank moderator

19

Now after the moderators are added, they will get a separate options in the navbar to
add questions

After the moderator clicks on the add question,it will go to /question/:question_id in
the url params where they will get a new interface to add question

Now from where the question_id will come ?

To generate unique id, we will use the short-unique-id package which also supports
in browsers. For that we will include the following cdn:

<script

src="https://cdn.jsdelivr.net/npm/short-unique-id@latest/dist/short-unique-id.min.j

s"></script>

After that inside a script tag, we instantiate the uid

<script>

// Instantiate

var uid = new ShortUniqueId();

</script>

Now wherever we want to generate a unique id we just need to call the uid()
function. Everytime it will generate a new unique id, within the scope of the
application:
var question_id=uid();

20

https://www.npmjs.com/package/short-unique-id

Above shows the interface to add questions.

● First row shows a hyperlink written Create Circuit boilerplate and Test data.
On clicking it, moderators will be able to navigate to the simulator page where
they will get the simulator to add circuit boilerplate and the testBench data.
It is shown in the following figure:

It will navigate to the url /simulator?question_id=${question_id}.

21

So how will it be different ?

When the moderator clicks on the hyperlink Create Circuit boilerplate and Test
data, we will store the question_id from the url parameter in localstorage as and its
value as an empty string.
Now when the moderator navigates to the simulator page to add questions, we will
check whether the value in the query params (question_id) exists as a key in
localstorage or not. If it exists we will render the corresponding value which will be
the empty string initially. When the moderator clicks on the save button on the top
(which will be visible only when the question id in query params is there in the
localstorage) after adding circuit and the testBench Data, then value of the
localstorage corresponding to the question_id key will be the circuitData(including
circuit boilerplate and testBench Data). So next time when the moderator visits the
simulator page again, he/she will not have to remake the circuit boilerplate and
testBench Data again.

Following is the code snippet of what happens when the simulator page loads, here
we are using the load() function already defined in project.js to render circuit

window.onload = function() {

// Extract question_id from the URL

const urlParams = new URLSearchParams(window.location.search);

const questionId = urlParams.get('question_id');

// Check if the current path is "/simulator" and question_id exists in

localStorage

if (window.location.pathname.startsWith("/simulator") && questionId &&

localStorage.getItem(questionId)) {

load(JSON.parse(localStorage.getItem(questionId)));

}

};

Below showing the code snippet of what happens when the user clicks on Save
button in simulator page

export function saveQuestion(){

// Extracting question_id from URL parameters

const urlParams = new URLSearchParams(window.location.search);

const question_id = urlParams.get('question_id');

22

if (question_id) {

let fl = 1;

const data = generateSaveData("Untitled", fl);

const localStorageKey = `${question_id}`;

localStorage.setItem(localStorageKey, data);

alert("Circuit boilerplate and test data saved");

} else {

alert("Error: Something went wrong! Try again");

}

}

We have used the function generateSaveData() function,However a small
modification inside the generateSaveDate() needs to be done at the starting such
that prompt will be shown in normal cases and not when moderator is using
simulator for adding questions (fl is the flag which indicates that)

export function generateSaveData(name,fl, setName = true) {

data = {};

// Prompts for name, defaults to Untitled

if(!fl)

name = getProjectName() || name || prompt('Enter Project Name:') ||

'Untitled';

In these ways we use the existing functions and add as less code as possible to
serve the purpose

● Then the second row contains the Name input where the moderator can write
the question name i.e the heading.

● The next row contains the input for the description. Here markdown is
supported , so that moderators can write the description in the markdown
editor. For this editor, we use SimpleMDE Markdown editor

At first we include the link tag and script tag in the top of the question_form.erb file to
include css and js cdn

<link rel="stylesheet"
href="https://cdnjs.cloudflare.com/ajax/libs/simplemde/1.11.2/simplemde.min.css">

23

https://simplemde.com/

<script

src="https://cdnjs.cloudflare.com/ajax/libs/simplemde/1.11.2/simplemde.min.js">

</script>

We also include the following snippet in the same file to render textarea to the UI

<h6><%= form.label :description %></h6>

<textarea id="question_description" name="question[statement]" class="form-control

form-input"></textarea>

Following script tag is added to the bottom of the same file which initialises a
SimpleMDE instance on an HTML element with the ID "question_description" when
the document is ready,

<script type="text/javascript">

$(document).ready(function() {

var simplemde = new SimpleMDE({ element:

document.getElementById("question_description") });

})

</script>

To display the description field as per the markdown content, a markdown parser like
Redcarpet is used in the application.

Redcarpet is already installed in the application. If not then we need to write the following in
the Gemfile and run bundle install

gem 'redcarpet', '~> 3.3', '>= 3.3.4'

After that we need to write the following snippet where we want to show
the markdown in the .erb file . We will be showing it in the simulator page
when the end user clicks on a question.

<div class="questions-description">
<%= markdown(@question.statement) %>

</div>

We also need to define a helper method to parse markdown content using Redcarpet. For
that we create a new file in the app/helpers directory , e.g., markdown_helper.rb and write
the following content in it

24

https://cdnjs.cloudflare.com/ajax/libs/simplemde/1.11.2/simplemde.min.js
https://rubygems.org/gems/redcarpet/versions/3.3.4?locale=en

module MarkdownHelper
def markdown(text)

renderer = Redcarpet::Render::HTML.new

markdown = Redcarpet::Markdown.new(renderer)

markdown.render(text).html_safe

end

end

Now to include this helper module globally we need to write the following in the
application_controller.rb

include MarkdownHelper

● The next two input fields are the dropdowns where moderators can select the
question topic and difficulty level of the question.

● Two buttons are there - Save question and Draft question. When a
moderator clicks on a submit question, a post request will be sent to the
backend with the payload (will be visible to the end user in questions page)
and when the moderator clicks on a draft proposal , it will be stored in the
localstorage (not be shown to the end user) . At max, a moderator will be able
to create 3 draft proposal

The demo of add question section is shown here
(https://youtu.be/NmjIUXorbwE)

The moderator’s question dashboard will look similar to this where they will be
able to see the questions, can filter according to difficulty and tags and will be able to
view, edit and delete.

Following flowchart shows the above flow:

25

https://youtu.be/NmjIUXorbwE
https://youtu.be/NmjIUXorbwE
https://circuitverse-questions-moderator.netlify.app/

User’s pov

Now coming to the point where users who want to practise are attempting questions.
When he clicks on a question then a similar page will open with the question
description and circuit boilerplate (if any) and the url parameter will be
/simulator/:question_id

When a user clicks on a question, the question is fetched from question id from the
database. Below shows sample question card div and its attribute will be question id

26

<% @questions.each do |question| %>

<div class="fetch-question" data-question-id="<%= question.id %>">

// question card

</div>

<% end %>

Following function is triggered when the user clicks on a question which fetches the
question, stores the circuit boilerplate and test Data in the local storage.

document.querySelectorAll('.fetch-question').forEach(function(button) {

button.addEventListener('click', function() {

var questionId = this.getAttribute('data-question-id');

fetchQuestionDataAndRedirect(questionId);

});

});

function fetchQuestionDataAndRedirect(questionId) {

fetch(`/questions/${questionId}`)

.then(response => response.json())

.then(data => {

// Store the test data and circuit boilerplate in local storage

localStorage.setItem('questionTestData', JSON.stringify(data.test_data));

localStorage.setItem('circuitBoilerplate',

JSON.stringify(data.circuit_boilerplate));

// Redirect to the simulator page

window.location.href = `/simulator/${questionId}`;

})

.catch(error => {

console.error('Error fetching question data:', error);

});

}

27

Now when the simulator page loads then we check for the question_id parameter, if
its present then we load the circuit boilerplate and hide the testbench (containing the
class testbench-manual-panel) from the UI

window.onload = function() {

// Extract question_id from the URL pathname

const questionId = window.location.pathname.split('/').pop();

// Check if the current path is "/simulator" and questionId exist in params

if (window.location.pathname.startsWith("/simulator") && questionId) {

const circuitBoilerplate =

JSON.parse(localStorage.getItem('circuitBoilerplate'));

const testBench = document.querySelector('.testbench-manual-panel');

// Load the circuit boilerplate

load(circuitBoilerplate);

// Hide the test bench

if (testBench) {

testBench.style.display = 'none';

}

}

};

The above approach helps to distinguish from the normal simulator page and the
question specific simulator page since one will be having testBench and question
and other will not. Hence we will also display the question in the simulator page
conditionally.
​​<% question_id = request.path.split('/').last %>

<% if window.location.pathname.starts_with?("/simulator") && question_id.present?

&& localStorage.getItem(question_id) %>

<div id="question-container">

// Contents of the question in form of markdown and the buttons as shown in the

UI

</div>

28

<% end %>

Now when the user clicks on submit and test button, it fetches the compares the
truth table in the testData in the localstorage with the circuit and alerts the number of
test cases passed and accordingly updates the status and post it to the database
export function testResult() {

const urlParts = window.location.pathname.split('/');

const questionId = urlParts[urlParts.length - 1];

const testData=JSON.parse(localStorage.getItem('questionTestData'));

const isValid = validate(testData, globalScope);

const results = runAll(testData, globalScope);

const { passed, total } = results.summary;

const status = (passed === total) ? 'solved' : 'attempted';

alert(`${passed} out of ${total}`);

// POST request to submit the result

fetch('/submissions/post_submission', {

method: 'POST',

headers: {

'Content-Type': 'application/json',

},

body: JSON.stringify({

submission: {

question_id: questionId,

status: status,

circuit: globalScope

}

})

})

.then(response => {

29

if (response.ok) {

console.log('Submission posted successfully');

} else {

throw new Error('Failed to post submission');

}

})

.catch(error => {

console.error('Error posting submission:', error);

});

}

Here we are using the runAll() function and validate() function which are already
defined in testbench.js

The above flow is shown below:

30

User’s submission demo is shown
here(https://youtu.be/YQXtZd0hAq8) . Alert shows the number of test
cases passed

The progress of the user will be shown in their dashboard

The dashboard will have all the solved and attempted questions and filtering options
will also be there like the main question page. Also there is a dropdown where users
can select between the public and private whether to make that section visible to the
other user or not.

When other user visits the https://circuitverse.org/users/:user_id page , then only if
the public boolean of the user visited is true then only it will be shown to other user
Questions dashboard

<% if @user.public? %>

// Questions section

<% end %>

Now two cases may happen

● The user who owns the dashboard clicks on the view button of a
particular question : When it happens, it fetches the question from the db
with question id along with submission history of that question for the user

31

https://youtu.be/YQXtZd0hAq8
https://youtu.be/YQXtZd0hAq8
https://circuitverse.org/users/:user_id

with the question id. Now in this case instead of loading the circuit boilerplate
from the question table , we will load the circuit that we posted to db when that
user submitted the question earlier. In this way users will be able to restore
the progress and can edit it .

function fetchQuestionDataAndRedirect(questionId) {

fetch(`/questions/${questionId}`)

.then(response => response.json())

.then(data => {

// Store the test data in local storage

localStorage.setItem('questionTestData', JSON.stringify(data.test_data));

// GET request to fetch the submission data

fetch(`/questions/${questionId}/submission`)

.then(response => response.json())

.then(submissionData => {

// Store the circuit data from the submission history in local storage

localStorage.setItem('circuitData',

JSON.stringify(submissionData.circuit));

// Redirect to the simulator page

window.location.href = `/simulator/${questionId}`;

})

.catch(error => {

console.error('Error fetching submission data:', error);

});

})

.catch(error => {

console.error('Error fetching question data:', error);

});

}

32

● Other users click on the view button of a particular question on
another's public dashboard : In that case also, the user will be able to see
what the other user did and will be able to make changes and submit, which
will be reflected in his own submission.

The flowchart is shown below:

Key Deliverables

● A dedicated practice platform where all questions will be available for practice
● Filtering questions according to tags, difficulties etc.
● Allow admin to grant CRUD operation on questions to moderators
● Allow moderators to add, edit and delete questions with ease along with

circuit templates.
● Allow the users to practise and submit questions and a progressive

dashboard where they will be able to track themselves.
● Auto verification of submitted answers.
● Interactive UI with markdown editor for question addition and view the

contents of the markdown.

Future improvements
● Currently teachers add assignments and those are checked manually, but this

feature can be integrated with that to allow auto verification and assign marks.

33

● A dedicated section where users can see all the submissions to a question made by
other users.

● One daily problem (similar to leetcode) can be given everyday to help them maintain
a streak and users will be rated.

Project Plan

As I embark on the CircuitVerse Practice Section project, my primary goal is to
create an interactive practice platform that fosters engagement and skill
development for students in digital logic. To kickstart the initiative, I'll dedicate the
pre-GSoC phase to making the UI and deep dive into the detailed requirements and
also on learning.

In the first phase of development, I'll focus on laying the groundwork for the
platform's essential features. This includes structuring the question bank database,
writing appropriate controllers and routes and other backend functionalities.
Additionally, I'll dive into user authentication and authorization crafting roles like
'question_moderator' to facilitate smooth management of the platform.

Moving into the second phase, my efforts will shift towards refining the user
experience and adding advanced functionalities. I'll automate the answer verification
process using circuitVerse's testbench feature. Simultaneously, I'll construct
personalised progress dashboards within user profiles, empowering learners to track
their submissions.

Throughout the development journey, I'll maintain open lines of communication with
mentors, seeking guidance and feedback to ensure the project aligns with
expectations.

Project Plan - Preliminary Plan

Community Bonding Period [May 1 - May 26]
Before and during the community bonding, I will gather detailed requirements about
all the criterias and features to be implemented and will also make a documentation
for the same so that I can follow that along the way. Also I will explore various ways
of implementing a particular feature and will make a note of the best one by
considering all the factors including scalability, robustness etc.

The detailed timeline is shown below:

34

Week
number

Start Date End Date Tasks to be completed

Phase 1 May 27 July 12

Week 1 May 27 June 2 -Work on creating schemas for the question bank

management system from the user's point of view and

add routes and controllers.

- Pull request for above implementation.

- Work on request changes(if any).

- Publish the blog.

Week 2 June 3 June 9 - Work on creating schemas for the question bank

management system from the admin and moderators

point of view and add routes and controllers.

- Implement authorization.

- Pull request for above implementation.

- Work on requested changes(if any).

- Publish the blog

Week 3 -

Week 4 -

Week 5

June 10 June 30 - Start working on UI for enabling admin to add

moderators

- Implement the add question page from the

moderator's point of view responsive on all screens.

- Implement the feature to add circuit boilerplate and

testBench data

Week 6 July 1 July 7 - Integrate the question addition feature with the

backend

- Major Improvements before the phase one

evaluation.

- Publish the blog.

Phase 1
Evaluation

July 8 July 12 Key Deliverables:
- Backend fully functional routes (can be tested with

postman)

- Feature to allow admin to grant access to moderators

- Fully functional question addition feature with circuit

35

Week
number

Start Date End Date Tasks to be completed

boilerplate

Phase 2 July 12 August 26

Week 1 July 13 July 19 - Start working on the UI for moderators dashboard

- Integrate it with the backend (able to perform CRUD

operation on questions)

- Pull request for the same

- Work on requested changes(if any)

- Publish a blog

Week 2 -

Week 3

July 20 August 2 - Will work on the UI of question practice page making

it responsive on all screens

- Implement filtering logic and its integration with the

backend

- Implement the auto verification and submission of

questions.

- Pull request for the same

- Work on requested changes(if any)

Week 4 August 3 August 9 - Start working on the progressive dashboard for the

user showing submission history and progress

- Integration of dashboard with the backend

- PR and will work on requested changes(if any).

Week 5 August 10 August 16 - Major Improvements before final evaluation.

- Publish a blog.

Week 6

Final
Evaluation

August 17 August 26 Key Deliverables:
- Fully functional question practice platform.

- Auto verification and submission

- Progressive dashboard.

36

Testing and verification
After completing each milestone mentioned above, the new feature will undergo
testing according to the documented requirements. Feedback will be solicited from
mentors and fellow GSOC students. Any suggested changes from the feedback will
be incorporated until the mentor is fully satisfied. Additionally, code reviews will be
conducted to ensure comprehensive coverage of all requirements, absence of logical
errors, and adherence to existing style guidelines.

Major milestone
1. Question CRUD operation from moderators Point of view (Deadline ~ July 7)
2. Auto verification and submission of question (Deadline ~ August 2)
3. Progressive dashboard and question practice platform (Deadline ~ August 26)

Additional Information
OS: Windows and MacOS
Code editor: VS code

I believe that I am the perfect candidate to complete the project as I am familiar with
a major part of the codebase and implemented various functionalities locally on my
system related to this problem statement. I also attached the code snippet for the
same in the proposal section

My involvement with the CircuitVerse community has been enriching, providing
valuable learning experiences through interactions with mentors and fellow
contributors. I'm enthusiastic about the prospect of continuing to collaborate with
CircuitVerse in the future

Mentors
Vaibhav Upreti, Tanmoy Sarkar, Smriti Garg, Vedant Jain

37

https://github.com/VaibhavUpreti
https://github.com/tanmoysrt
https://github.com/smritigarg
https://github.com/vedant-jain03

